If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5n^2+29n-42=0
a = 5; b = 29; c = -42;
Δ = b2-4ac
Δ = 292-4·5·(-42)
Δ = 1681
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1681}=41$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(29)-41}{2*5}=\frac{-70}{10} =-7 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(29)+41}{2*5}=\frac{12}{10} =1+1/5 $
| 3b-2/2=2 | | -13u+8u=-10 | | 5=1.3x-0.8 | | 5x+-9=-3x+20 | | b/3-0.15=1.25 | | -v+156=76 | | 9x-4+50=180 | | p/2+5=7.3 | | 161=202-x | | 6x+3=8x-19 | | 3-3z=-3 | | 5y=16+4y | | x-3-8=-4 | | 58=4w-10 | | 35=0.625x-2.7 | | 3=6c–15 | | 25=0.625x-2.7 | | 15x-7=4X4,-18 | | 3x+28+16=6x-34 | | 10+2m=0 | | -14+9q=10q | | 9x+10=15x-12 | | -2f+-1=-5 | | —8x+4(x-2)=-32 | | 5x+3=7x17 | | 14w+16=13w | | 78=3c | | 17t=18t-11 | | 8y+3=5y-9 | | 2y+9/2=1+y | | 3x+23)+(7x-4)+(9x-6)+(95)+(90)=540 | | -3n+-10=5 |